« 【数学】 直線の方程式 Line equation | トップページ | 【数学】 平面の方程式 Plane equation »

【数学】 平面の方程式 基礎 Plane equation Basic

https://remedics.air-nifty.com/photos/hawaii/geogebra1.png

In 3D space of x, y, z,

A plane is defined by 3 points.

For example,

If you have a set of 3 points such as

A = (2, 4, 6)

B = (10, 2, 4)

C = (8, 8, 8)

https://remedics.air-nifty.com/photos/hawaii/geogebra2.png

then only one plane passing through the 3 points is identified.

https://remedics.air-nifty.com/photos/hawaii/geogebra3.png

But what is the equation of this plane?



You must find Normal vector (P, Q, R).

If you know the Normal vector,

the equation of the plane is

P (x - a) + Q (y - b) + R (z - c) = 0

, where (a, b, c) is a point on the plane.

For example, the equation of a plane with normal vector of (1, -7, 11) and passing a point (2, 4, 6) is,

(x - 2) - 7 (y - 4) + 11 (z - 6) = 0


But how do you find the normal vector, if all you are gven are 3 points?

Here is the answer.

The normal vector is a vector that is perpendicular to any 2 vectors formulated by the 3 points !!


https://remedics.air-nifty.com/photos/hawaii/geogebra40.png

For example,

The normal vector is not only perpendicular to

Vector AB =  (2, 4, 6) -->> (10, 2, 4)

but also perpendicular to

Vector AC = (2, 4, 6) -->> (8, 8, 8).

https://remedics.air-nifty.com/photos/hawaii/geogebra4.png

Vector (2, 4, 6) -->> (10, 2, 4)

is reduced to (8, -2, -2) === Vector AB

Vector (2, 4, 6) -->> (8, 8, 8).

is reduced to (6, 4, 2) === Vector AC

Then, how do you find the vector perpendicular to both of them?

https://remedics.air-nifty.com/photos/hawaii/geogebra39.png

This is the time to use cross product.

8   -2   -2     8   -2   -2
         X     X    X
6    4     2     6     4    2

-2x2 -  -2x4  = 4

-2x6 -   8x2  = -28

8x4   -  -2x6  = 44

Therefore, normal vector is (4, -28, 44)

https://remedics.air-nifty.com/photos/hawaii/geogebra6.png

This normal vector is perpendicular to the plane including points A, B, C.

https://remedics.air-nifty.com/photos/hawaii/geogebra5.png

Looking from the side...

https://remedics.air-nifty.com/photos/hawaii/geogebra7.png

Now you got the plane equation.

https://remedics.air-nifty.com/photos/hawaii/geogebra8.png

If this plane has normal vector of (4, -28, 44) and includes point A (2, 4, 6) as the following picture,

https://remedics.air-nifty.com/photos/hawaii/geogebra14.png

4(x - 2) - 28(y - 4) + 44 (z - 6) = 0.

Of course, this is the same plane with normal vector of (4, -28, 44) and includes point B (10, 2, 4).

4(x - 10) - 28(y - 2) + 44 (z - 4) = 0.

https://remedics.air-nifty.com/photos/hawaii/geogebra15.png

Of course, this is the same plane with normal vector of (4, -28, 44) and includes point C (8, 8, 8).

4(x - 8) - 28(y - 8) + 44 (z - 8) = 0.

https://remedics.air-nifty.com/photos/hawaii/geogebra13.png

Because the normal vector is perpendicular to

https://remedics.air-nifty.com/photos/hawaii/geogebra10.png

https://remedics.air-nifty.com/photos/hawaii/geogebra12.png

https://remedics.air-nifty.com/photos/hawaii/geogebra11.png


Normal vector (4, -28, 44) can be reduced to (1, -7, 11).

Therefore,

(x - 2) - 7(y - 4) + 11 (z - 6) = 0.

or

(x - 10) - 7(y - 2) + 11 (z - 4) = 0.

or

(x - 8) - 7(y - 8) + 11 (z - 8) = 0.

is also representing the same plane.

https://remedics.air-nifty.com/photos/hawaii/geogebra9.png

« 【数学】 直線の方程式 Line equation | トップページ | 【数学】 平面の方程式 Plane equation »

コメント

コメントを書く

コメントは記事投稿者が公開するまで表示されません。

(ウェブ上には掲載しません)

« 【数学】 直線の方程式 Line equation | トップページ | 【数学】 平面の方程式 Plane equation »